
MTH 310.002 Test II Review Spring 2012

Absractions versus examples. The purpose of abstraction is to reduce ideas to
their essentials, uncluttered by the details of a specific situation. Our lectures built
up abstract concepts from concrete examples, but this review will look back the other
way.

The Test will focus on quotient rings R/I and their main examples, the modular
arithmetic Zn = Z/(n) and the extension field K = F [x]/(p(x)).

Rings. Abstract algebra asks: “What is a number system?” Our answer: any set
of objects which can be added and multiplied so the usual algebra formulas and
manipulations hold. In fact, we need only check the most basic algebra laws (the
Axioms), from which all the rest will follow. Formally, a general number system is
a ring: some set R with some definition of plus and times satisfying: (i) additive
closure, (ii) additive associativity, (iii) additive commutativity, (iv) zero element, (v)
existence of a negative for any element, (vi) multiplicative closure, (vii) multiplicative
associativity, (viii) distributivity of multiplication over addition, (ix) identity element
1.

example: The ring of 2 × 2 real matrices R = M2(R) satisfies only these axioms.
It is non-commutative, since in general AB 6= BA for two matrices, and it does not
have reciprocals, since not every non-zero matrix A has an inverse A−1. However, we
can still do some algebra in R: the solution to AX + B = 0 is X = −A−1B provided
A is invertible.

For number systems with even more of the usual algebra, we require further: (x)
mulitiplicative commutativity, which makes a commutative ring, or even (xi) existence
of a reciprocal a−1 for any a 6= 0, which makes a field.

example: The most basic commutative ring is the integers Z, which is not a field
since only the units ±1 have reciprocals in Z. The most basic fields are the rational
numbers (fractions) Q, the real numbers R, and the complex numbers C. In all these
fields, almost all algebra is valid, such as the quadratic formula: the solutions to
ax2 + bx + c = 0 are x = 1

2a
(−b ±

√
b2 − 4ac), provided there is an element r in our

field such that r2 = b2 − 4ac; otherwise there are no solutions in our field.

Ring constructions. How to find new number systems, especially fields? Several
constructions produce larger rings from a given R.
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• The ring Mn(R) of n × n matrices with entries rij ∈ R, and the usual matrix
operations. This is never a field, since it is not commutative.

• Given two (or more) rings R1, R2, we can form the product ring R1 × R2, the
set of all pairs (r1, r2) with r1 ∈ R1, r2 ∈ R2, and operations done on each
coordinate individually. This is never a field, since it has zero-divisors (r1, 0)
and (0, r2).

• The polynomial ring R[x] consists of polynomials of the form f(x) = a0 +
a1x + · · ·+ anx

n with coefficients ai ∈ R and the usual operations on functions.
If R = F is a field, then F [x] is a commutative ring with no zero-divisors.
It is never a field, however, because its only units are constant polynomials
f(x) = c 6= 0 with f(x)−1 = 1

c
∈ F [x].

Quotient rings. Now let R be a commutative ring. To get a field from R, we cut
it down by an ideal I ⊂ R. That means we partition R into equivalence classes,
subsets of R which each count as a single number in R/I. Each class [r] consists of
an element r ∈ R shifted by all the elements of I:

[r] = r + I = {r + i for i ∈ I} = {r′ with r − r′ ∈ I}.

We say r is a representative of its class, but we could take any other element as a
representative: [r] = [r′] for any r′ ∈ [r]. There is often a special minimal element
r0 ∈ [r] which we call the standard form: [r] = [r0].

The ring R/I is the set of all such equivalence classes [r], with operations done
on representatives: [r] + [s] = [r + s] and [r][s] = [rs]. warning: The notation
[r][s] does not mean multiplication of all the elements of [r] and [s]. Rather, we take
one representative of each class, multiply them to get rs ∈ R, then take the class of
this rs, namely [rs] = rs + I. We must make sure this does not depend on which
representatives we choose: if [r] = [r′] and [s] = [s′], we must have [r + s] = [r′ + s′]
and [rs] = [r′s′]. The properties needed to ensure this are the definition of an ideal.

Formally, an ideal I must have additive closure (i, j ∈ I ⇒ i + j ∈ I) and
multiplicative absorption (i ∈ I, r ∈ R ⇒ ir ∈ I). The main examples of ideals are
the principal ideals, the multiples of a fixed element r ∈ R: we denote I = (r) =
{rq for q ∈ R}.

The larger the ideal I, the smaller and neater the quotient ring R/I. An extreme
example is I = (0) = {0} with R/(0) ∼= R. The other extreme is I = (1) =
{1q for q ∈ R} = R with R/(1) ∼= {0}, a degenerate ring containing only a zero
element. A maximal ideal is just short of (1) = R, meaning the only ideal larger than
I is R itself.
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I is maximal if and only if R/I is a field. proof (⇒) : Let I be maximal. If
[a] 6= [0] ∈ R/I, then a 6∈ I and I + (a) = {i + aq for i ∈ I, q ∈ R} is an ideal bigger
than I, so it must be R. In particular 1 ∈ I +(a), meaning 1 = i+aq for some q ∈ R.
Thus [1] = [i] + [a][q] = [a][q] and [q] = [a]−1 ∈ R/I. Hence R/I is a field.

Quotients of the integers. We repeat everything in the previous section for the
special case R = Z. To get a finite ring from Z, we cut it down by an ideal I. Here
the only ideals are the principal ideals I = (n) = {nq for q ∈ Z}, all multiples of a
fixed n. The smallest ideal is I = (0) = {0}, the largest is I = (1) = Z. We have
(a) ⊂ (b) whenever b | a. The maximal ideals are I = (p) where p has no divisors
except itself and 1, namely p a prime.

To quotient R = Z by a given I = (n), we partition Z into classes. For example,
for I = (3), we get the following partition:

[0] = I [1] = 1 + I [2] = 2 + I

0 1 2
3 −3
6 −6
9 −9
...

...

4 −2
7 −5
10 −8
...

...

5 −1
8 −4
11 −7
...

...

Z is the union of these classes: Z = [0] ∪ [1] ∪ [2]. Any of the elements in a class
produces the same class: [1] = {. . . ,−5,−2, 1, 4, 7, . . .} is the same set as [7] =
{. . . , 1, 4, 7, 11, 15, . . .}. The top elements 0, 1, 2 in each class are the usual standard
forms (the nicest representatives), though an equally nice choice would be 0, 1,−1.

Now we change perspective on the classes: instead of thinking about the many
elements inside, we consider each class as a single object, a “number” in R/I =
Z/(3) = {[0], [1], [2]}. To add or multiply two of these objects, we add or multiply
one representative from each, and take the resulting class. For [2][2], we compute
(2)(2) = 4 and take its class [4] = [1]; or equally well take −1 ∈ [2] and compute
(−1)(−1) = 1 and take its class [1].

warning: This is not the same as multiplying every element in one class by
every element in the other: for example [0][0] = [0] = {3q for q ∈ Z}, but (I)(I) =
{(3q)(3q′) = 9qq′ for q, q′ ∈ Z}, a much smaller set.

If p is prime, then I = (p) is a maximal ideal, and Z/(p) = Zp is a field. To
compute [a]−1: if [a] 6= [0] ∈ Z/(p), then a 6∈ (p) and p /| a. In this case gcd(a, p) = 1
and the Euclidean Algorithm allows us to write as + pt = 1, so [a][s] = [1] and
[a]−1 = [s] ∈ Z/(p).
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Quotients of polynomial rings. For a field F , to get a field extension K ⊃ F , we
cut down R = F [x] by an ideal I = (p(x)) to get K = R/I = F [x]/(p(x)). (Again,
the only ideals of F [x] are principal ideals.)

We partition F [x] into classes. For example, For R = F [x] = Z2[x] and I =
(p(x)) = (x2 + x + 1), we get the partition:

[0] = I [1] = 1 + I [x] = x + I [x+1] = x+1 + I

0 1 x x + 1

p(x) = x2+x+1 1+p(x) = x2+x x+p(x) = x2+1 x+1+p(x) = x2

xp(x) = x3+x2+x 1+xp(x) = x3+x2+x+1 x+xp(x) = x3+x2 x+1+xp(x) = x3+x2+1

(x+1)p(x) = x3+1 1+(x+1)p(x) = x3 ...
...

...
...

We know that all polynomials f(x) are in one of these classes because the division
algorithm will give f(x) = p(x)q(x) + r(x) with deg r(x) < deg p(x) = 2, meaning
r(x) = ax + b; thus f(x) ∈ [r(x)] = [ax + b]. We take the remainder r(x) = ax + b as
the standard form in its class, and write [f(x)] = [ax + b]. Since a, b ∈ Z2, there are
22 = 4 distinct classes. (For a general finite field Zp and a general irreducible p(x) of
degree n, the standard forms are all polynomials r(x) of degree ≤ n− 1, and each of
their n coefficients can be chosen in Zp. Hence |R/I| = |K| = pn.)

In the quotient ring R/I = F [x]/(p(x)), each “number” is a class [f(x)]. We can
compute products by multiplying [f(x)][g(x)] = [f(x)g(x)], then reducing f(x)g(x)
via division by p(x).

If p(x) is an irreducible polynomial (no factors other than constants c and c p(x) ),
then (p(x)) is a maximal ideal, and F [x]/(p(x)) = K is a field. We can compute
reciprocals [f(x)]−1 the same way as for Z/(p): if [f(x)] 6= [0], then p(x) /| f(x).
In this case, gcd(f(x), p(x)) = 1, and the Euclidean Algorithm allows us to write
f(x)g(x) + p(x)q(x) = 1, so [f(x)][g(x)] = [1], and [f(x)]−1 = [g(x)].

After we are used to the definition of the field K, we introduce a more practical,
compact notation. We write α = [x] and drop the brackets for coefficients, so that
[ax + b] = aα + b for a, b ∈ Z2. Thus, K = {0, 1, α, α+1}. Since [x2 + x + 1] = [0],
we have α2 + α + 1 = 0, or α2 = α + 1. This relation allows us to compute products
without long division, reducing higher powers of α to linear expressions. We still need
the Euclidean algorithm to divide, however, by computing 1/(aα + b) = [ax + b]−1.

For a general irreducible p(x) ∈ F [x], the field K = F [x]/(p(x)) contains a copy
of F (namely, the constant polynomials), and also a root α = [x] to the equation
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p(y) = 0. (Here I have used a new variable y to avoid confusion with the x involved
in building K.) example: For x2 + 1 ∈ R[x], we get the field K = R[x]/(x2 + 1) is
isomorphic to the complex numbers C, since a standard form aα+ b ∈ K corresponds
to b + ai ∈ C, with parallel addition and multiplication resulting from the relations
α2 = −1 ∈ K and i2 = −1 ∈ C.

Ideals and homomorphisms. There is another way to think of “cutting down” a
ring R to a smaller ring S: take a surjective homomorphism φ : R → S. This turns
out to be the same as taking a quotient. We have a natural projection homomorphism
π : R → R/I given by π(r) = [r], and any surjective homomorphism is essentially of
this form:

theorem: Let φ : R → S be a surjective homomorphism of rings. Then the kernel
I = Ker(φ) = {r ∈ R s.t. φ(r) = 0} is an ideal of R, and R/I ∼= S.

example. Define φ : F [x] → F by f(x) = f(a) for a fixed a ∈ F . Clearly φ is
a surjective homomorphism. Its kernel is I = Ker(φ) = {f(x) s.t. f(a) = 0}, an
ideal. In fact, the Linear Isomorphism Theorem tells us that f(a) = 0 if and only
if x−a is a factor of f(x), so that the kernel is the principal ideal I = (x−a) =
{(x−a)q(x) for q(x) ∈ F [x]}. Indeed, we have F [x]/I = F [x]/(x−a) ∼= F , since the
standard forms are just constant polynomials r(x) = c.

Exercises

1. Consider the field Z17 = Z/(17).

(a) Find the reciprocals 1−1, 2−1, . . . , 16−1 ∈ Z17.

(b) Make a table of squares in Z17 in reduced form (e.g. 62 = 36 = 2, so√
2 = 6 ∈ Z17. Explain the symmetry of this table: it begins 1, 4, 9, . . . ,

and ends . . . , 9, 4, 1.

(c) Solve the equation 2x2 + 4x + 1 = 0 for x ∈ Z17.

2. A field K with 8 elements

(a) Construct such a field K as an extension field of Z2. Take an irreducible
polyomial p(x) of degree 3, and let K = Z2/(p(x)). Write the 8 elements
as standard forms in the compact notation (α instead of [x], no brackets
on coefficients).

(b) Find the reciprocal of each element in K.

5



(c) Factor p(y) completely into linear factors in K[y]. Hint: One root of p(y)
is y = α. Check that y = α2 is another root.

3. It is difficult to write down a real solution to x3 + x + 1 = 0. Assuming α is
such a solution, consider the ring:

K = {a0 + a1α + · · ·+ anα
n for ai ∈ Q, n ≥ 0}.

(a) Consider the homomorphism φ : Q[x] → K given by φ(f(x)) = f(α). Find
the kernel of φ. Hint: It is clear that p(x) = x3 + x + 1 ∈ Ker(φ), so the
principal ideal (p(x)) ⊂ Ker(φ). Now note that p(x) is irreducible in Q[x],
so (p(x)) is a maximal ideal. Could there be any more elements of Ker(φ)?

(b) Use a theorem to that conclude that K ∼= Q[x]/(x3 + x + 1), and that K
is a field.

(c) Assuming part (b), show that any element of K can be written in the form
a0 + a1α + a2α

2.

(d) Find the reciprocal 1
β

= b0 + b1α + b2α
2 of the element β = 1 + α2 by the

Euclidean Algorithm applied to x2 + 1 and x3 + x + 1.
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